BSPP Presidential Meeting 1997 |
|
Plant Pathology - Global Perspectives of an Applied Science
|
Session II - Identifying the Problem
The role of extension services -agony and ecstacy
Dr Reuben Ausher
Ministry of Agriculture and Rural Development, Extension Service, P.O.Box
7054, Tel Aviv 61070, Israel
Extension Services are supposed to cover the whole technology development
continuum, namely technology generation, diffusion and adoption. Further, they
should convert data and information into knowledge and technologies. The
classical growers/extension/research triangle is getting much more complex due
to a proliferation of actors interacting with growers. Extension services should
catalyze the conversion of subsistence farmers into commercial growers and
finally into entrepreneurs. Most extension systems are either production,
environment or community oriented. Adviser/advised ratios differ widely from
1:325 in Europe to 1:3500 in the Near East. Under intensive cropping systems
there is an increased demand for advice to support both managerial and technical
decisions. Agricultural extension faces a series of management and professional
conflicts and crises. The crises debilitate extension organizations and they
could dwindle and even collapse. Extension systems in the developing world are
either managed by government (as community-, commodity-, integrated development
and Training & Visit systems) or partially privatized and decentralized. In
the industrialized world most systems are either government-managed, land-grant,
grower-owned or privatized. The debate on the function of privatized extension
(consulting) systems and the need for agricultural extension and R&D as
public goods is still not resolved. The era of ideology and of rigid extension
models adequate for the developing world is over. One central requirement has to
be stressed in this context - professionalism.
Fortunately, extension faces new opportunities and is expected to develop
leadership in areas such as Integrated Pest Management, computer-supported
technologies, distant education. We feel new and clear front-line demand for
integrated crop protection extension focusing on disease, pest and weed control;
good understanding of crop husbandry, protection and marketing; wide range
diagnostic capabilities; understanding of the whole range of chemical control,
and application techniques; mastering supervised control, fully-fledged IPM, and
biocontrol practices; specialization of crop protection extension by
commodities.
Monitoring for disease in seed potato production
Dr Jane M. Chard
Scottish Agricultural Science Agency, East Craigs, Craigs Road, Edinburgh,
EH12 8NJ
Monitoring for disease is an integral part of the Seed Potato Classification
Scheme administered by the Scottish Office Agriculture, Environment and
Fisheries Department in Scotland. The Scheme is based on visual assessment for
disease and trueness to variety to meet tolerances specified in national
regulations. Visual assessment is also used to monitor infection of stocks in
the previous season.
Surveys are done to fulfil legislative requirements to confirm freedom from
quarantine pathogens and also to monitor the occurrence of other pathogens in
seed stocks. The data from such surveys, when compared with those of previous
years, can reflect the impact of changes in technology or cultural practices.
Occasionally it is necessary to implement specific monitoring for diseases or
their vectors. In Scotland an aphid monitoring scheme has been in operation
since 1992. A reduction in virus incidence in stocks has been recorded following
implementation of this measure.
Monitoring for diseases is a vital component of the seed potato production
system in Scotland. For successful control of diseases within the Scheme,
however, in addition to monitoring disease occurrence, measures and specified
tolerances must be based on a sound knowledge of the biology and epidemiology of
each pathogen.
Sustainable farming - are we getting there?
Prof. Martin S. Wolfe
Wakelyns Agroforestry, Fressingfield, Suffolk, IP21 5DS, England
A comprehensive concept of sustainable farming must take into account social,
economic and environmental aspects of agriculture. However, the current
structure of mainstream farming in Europe arose from the post Second World War
policy that was directed to secure adequate food supplies at almost any cost.
Subsidies and technological developments did secure a vast increase in some
agricultural commodities. Unfortunately, this movement was based largely on
monocultures supported by high levels of external inputs, often with unforeseen
and far-reaching negative consequences. A wide range of technical solutions is
now being applied to try to improve existing mainstream systems. However, in
terms of long-term sustainability, there are strong arguments to suggest that
this may be the wrong approach. Biological, economic and social reasoning
indicates that a major alternative direction is to change towards greater
diversity within farming systems. The basis for this view, some of the progress
made so far and some implications for plant pathology, will be considered,
together with some suggestions for further development.
The closed environment - a challenge to horticulture
Dr G Martin McPherson
Horticulture Research International, Cawood, Selby, North Yorkshire, YO8 0TZ,
UK
Introduction
Salad crops have been grown intensively under protection for many decades and
production has increasingly relied heavily on fungicides to maintain control of
both foliar and root infecting pathogens. The occurrence of persistent
soil-borne root pathogens, e.g. Pyrenochaeta lycopersici, Phomopsis
sclerotioides, largely uncontrolled by fungicides, stimulated the move into
soil-less or hydroponic production systems. Partly as a consequence of this move
into inert substrates, e.g. rockwool, the marketable yield and quality of tomato
and cucumber crops improved dramatically.
In the last few years environmental issues have predominated and attention
has been focused on the increased occurrence of pesticide residues in harvested
produce and the threat of ground-water contamination by both fertilisers and
pesticides in the run-off from these crops. The hydroponics industry,
particularly in developed countries, are now looking to respond to retailer and
consumer needs by developing 'closed' production systems to minimise both
environmental pollution and pesticide inputs into salad crops.
Fungicides are used prophylactically in both the aerial and root environment
of salad crops. The challenge for horticulture, as we move towards the next
millennium, will be to develop sustainable production techniques which reduce
pesticide use, minimise residues in food and which safeguard the environment for
future generations. This must be achieved within a framework of continued
economic production to deliver the quality of produce that the consumer has
become accustomed.
The aerial environment
Significant advances have been made in the area of pest control in UK-grown
protected salad crops and it is now unusual for any insecticides to be applied.
Instead, natural enemies (predators) are routinely introduced to suppress pest
populations. Yet, in these same crops, fungicides continue to be used routinely
for the control of powdery mildew (Sphaerotheca fuliginea, Erysiphe sp.), grey
mould (Botrytis cinerea) and stem rots (Didymella [Mycosphaerella] spp.) These
fungicides potentially disrupt not only the predator-prey balance but also the
epiphytic microflora and prevent the establishment of myco-parasites. We should,
as pathologists, perhaps be a little disappointed that further progress has not
been made to improve our understanding of the role, and possible antagonism, of
the epiphytic microflora on leaf surfaces and at the same time established
myco-parasites, e.g. Ampelomyces quisqualis 'AQ10', Sporothrix flocculosus, for
use in this controlled environment. It should be acknowledged that, in the UK at
least, one of the primary hurdles hindering progress in this area is the
registration or authorisation process for 'bio-pesticides'.
The root environment. Currently, in most hydroponic crops, excess nutrient
solution and the nitrates, phosphates, pesticides and any pathogen propagules it
might contain, is discarded. This approach minimises the risk of disseminating
pathogen spores though is perceived to be environmentally unfavourable. As
production costs rise, the inefficient use of both water and fertiliser is
encouraging growers to consider recirculation or 'closed' hydroponics
technology.
It has been demonstrated that various root pathogens are disseminated widely
in re-used hydroponic solution, although this can be effectively countered by
adopting a strategy of solution disinfection, e.g. heat, UV, ozone, albeit at a
significant cost. Interestingly, the rate of disease development in 'closed'
hydroponic crops has been observed to be much slower than in equivalent 'open'
culture systems. This has led to a series of hypotheses to account for the
observed disease suppression. Collaborative studies are now paving the way
towards a better understanding of the various plant-microbe interactions in the
hydroponic root environment. The hope is that the observed suppressive
mechanisms may be harnessed and utilised more fully to maintain disease control
in these crops without resorting to prophylactic use of fungicides in the
future.
Satellite imagery - avoiding muddy boots?
Dr Mike D Steven
University of Nottingham, Department of Geography, University Park,
Nottingham NG7 2RD
Satellite imagery offers the opportunity to monitor the health of crops over
a wide region, but to be useful for monitoring plant disease, it must satisfy
certain preconditions:
- The satellite observation must be significantly affected by the disease
- Satellite data must be available at the critical times required.
Remote sensing systems operate from optical wavelengths, through the region
of thermal emissions to microwave wavelengths. The best prospects for disease
monitoring lie in detecting changes in leaf area or leaf pigmentation, which are
susceptible to optical techniques, or in stomatal responses which can sometimes
be detected thermally, or in canopy structural responses which may be detectable
by radar. However, a difficulty with current orbiting systems is that the
spatial resolution is not fine enough to measure the spatial patterns
traditionally associated with crop disease monitoring from a Landsat image
acquired six weeks earlier, suggesting that satellite imaging might offer a
feasible approach in a less demanding climate.
|